Final answer:
sin(α - β) = sinαcosβ - cosαsinβ, sin(α - β) = -59/60
Step-by-step explanation:
To find sin(α - β), we can use the formula:
sin(α - β) = sinαcosβ - cosαsinβ
We know that sinα = 3/5 and cosα is positive in Quadrant I. Therefore, cosα = √(1 - sin²α) = √(1 - (3/5)²) = √(1 - 9/25) = √(16/25) = 4/5.
We also know that tanβ = 5/12 and tanβ is negative in Quadrant III. Therefore, cosβ = -√(1 + tan²β) = -√(1 + (5/12)²) = -√(1 + 25/144) = -√(169/144) = -13/12.
Plugging the values into the formula, we get:
sin(α - β) = (3/5)(-13/12) - (4/5)(5/12) = -39/60 - 20/60 = -59/60
So, sin(α - β) = -59/60