174k views
0 votes
Sarah took the advertising department from her company on a round trip to meet with a potential client. Including Sarah, a total of ten people took the trip. She was able to purchase coach tickets for $300 and first-class tickets for $1150. She used her total budget for airfare for the trip, which was $8950. How many first-class tickets did she buy, and how many coach tickets did she buy?

a. 4 first-class, 6 coach
b. 3 first-class, 7 coach
c. 5 first-class, 5 coach
d. 6 first-class, 4 coach

User D Ie
by
8.0k points

1 Answer

4 votes

Final answer:

Sarah bought 4 first-class tickets and 6 coach tickets.

Step-by-step explanation:

Let's assume Sarah bought x first-class tickets and y coach tickets. The cost of each first-class ticket is $1150 and the cost of each coach ticket is $300. According to the given information, Sarah used her total budget of $8950 for airfare. Therefore, we have the equation:

x(1150) + y(300) = 8950

To solve for x and y, we need to find values that satisfy this equation. One solution is x = 4 and y = 6. Therefore, Sarah bought 4 first-class tickets and 6 coach tickets.

User Shruthi R
by
7.4k points