196k views
1 vote
What is the equation that models the situation for the steel company making flat rectangular frames with inside dimensions of 11 cm by 6 cm, aiming for a final area as close to 28 cm² as possible, with a uniform width?

A) Width×(Length−2×Width)=28

B) Width×(Length+2×Width)=28

C) (Length+2×Width)×(Width−2×Length)=28

D) (Length−2×Width)×(Width+2×Length)=28

User Bsisco
by
7.7k points

1 Answer

3 votes

Final answer:

The equation that models the situation for the steel company making flat rectangular frames with inside dimensions of 11 cm by 6 cm, aiming for a final area as close to 28 cm² as possible, with a uniform width is option A) Width×(Length−2×Width)=28.

Step-by-step explanation:

The equation that models the situation for the steel company making flat rectangular frames with inside dimensions of 11 cm by 6 cm, aiming for a final area as close to 28 cm² as possible, with a uniform width is option A) Width×(Length−2×Width)=28.

To solve this problem, we need to consider that the equation for the area of a rectangle is Length × Width. Since the inside dimensions of the frame are given, we need to find the width and length of the outer dimensions. Using the equation for the area of a rectangle, we can set up the equation: Width × (Length - 2 × Width) = 28. Solving this equation will give us the width of the frame.

User AToz
by
8.5k points
Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.