178k views
3 votes
State the vertex

(a) (-3, 5)
(b) (3, -5)
(c) (-3, -5)
(d) (5, -3)

1 Answer

4 votes

Final answer:

The given question requires information regarding the vertex of a quadratic function, but lacks context for a complete answer. By using the quadratic formula, one can find the roots of a quadratic equation and determine the axis of symmetry, which is relevant for finding the vertex of a parabola.

Step-by-step explanation:

The student's question seems to involve finding the vertex of a quadratic function or understanding parts of the quadratic formula and its applications. It appears that it could be related to the calculation of the coordinates for a vertex of a parabola described by a quadratic function or the roots of a quadratic equation. However, the question does not provide a complete context. If we are using the quadratic formula, which is typically stated as x = (-b ± √(b² - 4ac))/(2a), we can find the solutions to a quadratic equation of the form ax² + bx + c = 0. Substituting the provided values for a, b, and c into the quadratic formula allows us to find the x-coordinates of the points where a parabola crosses the x-axis, which may include the vertex if the axis of symmetry is between these roots.

For example, substituting the values a = 1, b = 10.0, and c = -200, we would get the solutions to the equation x² + 10x - 200 = 0, which are the x-coordinates of the points where the graph of the parabola crosses the x-axis. If the student needs to find the vertex, they would calculate the axis of symmetry using x = -b/(2a), then plug this x-value into the original equation to find the y-coordinate of the vertex.

User Rahules
by
8.7k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories