Final answer:
To evaluate the given integrals over the complex square □, we first parameterize the square and then substitute the parameterization into the integral expressions. We simplify the expressions and evaluate the integrals using the u-substitution method.
Step-by-step explanation:
To evaluate the given integrals, we first need to parameterize the square □ in the complex plane. Let z = x + yi, where x and y are real numbers. The vertices of the square are ±2±2i, which correspond to the points (2, 2), (-2, 2), (-2, -2), and (2, -2). We can write the parameterization as:
z = 2e^(it) + 2ie^(it), where t ∈ [0, 2π]
(a) ∫□z(z^2+8)sin(z)dz:
Using the parameterization, we substitute z = 2e^(it) + 2ie^(it) into the integral and simplify the expression. Then we use the fact that sin(z) = (e^(iz) - e^(-iz))/2i to further simplify the integral. Finally, we evaluate the integral using the u-substitution method.
(b) ∫□(z+1)^4exp(2z)dz:
Using the parameterization, we substitute z = 2e^(it) + 2ie^(it) into the integral, simplify the expression, and expand (z+1)^4. Then we evaluate the integral using the u-substitution method.
(c) ∫□z^2+2zdz:
Using the parameterization, we substitute z = 2e^(it) + 2ie^(it) into the integral and simplify the expression. Then we evaluate the integral using the u-substitution method.