Final answer:
The remainder of the division is -69x² - 15x + 7.
Step-by-step explanation:
To find the remainder of the division of (x³ − 4x² + 15x + 7) divided by (x + 2), we can use long division.
- Start by dividing x³ by x, which gives x².
- Multiply (x + 2) by x², which gives x³ + 2x².
- Subtract x³ + 2x² from x³ − 4x² + 15x + 7, which gives -6x² + 15x + 7.
- Repeat the process with -6x² + 15x + 7.
- Divide -6x² by x, which gives -6x.
- Multiply (x + 2) by -6x, which gives -6x³ - 12x².
- Subtract -6x³ - 12x² from -6x² + 15x + 7, which gives 27x² - 15x + 7.
- Repeat the process with 27x² - 15x + 7.
- Divide 27x² by x, which gives 27x.
- Multiply (x + 2) by 27x, which gives 27x³ + 54x².
- Subtract 27x³ + 54x² from 27x² - 15x + 7, which gives -69x² - 15x + 7.
The remainder of the division is -69x² - 15x + 7.