165k views
5 votes
Find the area under the standard normal distribution curve between z = 0 and z = 2.16. =0.4846

1 Answer

3 votes

Final answer:

To find the area under the standard normal distribution curve between z = 0 and z = 2.16, you need to use a z-table to find the cumulative area to the left of z = 2.16 and then subtract the area to the left of z = 0, which is 0.5, to get the area between the two z-scores.

Step-by-step explanation:

The student is asking how to find the area under the standard normal distribution curve between z = 0 and z = 2.16. This involves using a z-table, which displays the area under the normal curve to the left of any given z-score.

To find the area between z = 0 and z = 2.16, we look up the area to the left of z = 2.16 in the z-table, which represents the cumulative probability up to that point. Since we know the total area under the curve is 1 (or 100%), and the area to the left of z = 0 is 0.5 (because z = 0 represents the mean of the distribution), we need to subtract the area to the left of z = 0 from the area to the left of z = 2.16 to find the area between these two points.

If we find that the area to the left of z = 2.16 is, for example, 0.9846, the area between z = 0 and z = 2.16 would be 0.9846 - 0.5 = 0.4846.

User Onnesh
by
7.7k points