Final Answer:
The answer of the given equation that " the value of x that will make L||M: is (b) 4x + 2
Step-by-step explanation:
For two lines, L and M, to be parallel, their slopes must be equal. In the context of linear equations, two lines are parallel if they have the same coefficient of x.
The given options are:
(a) 6x + 8
(b) 4x + 2
(c) M
(d) x = [?]
Among the given options, the equation (b) 4x + 2 has the form that indicates parallel lines. The coefficient of x is 4, which is the same as the coefficient of x in a standard linear equation for a line. Therefore, the correct answer is (b) 4x + 2.
Option (c) M is not an equation, and option (d) x = [?] is not a specific equation, so they do not represent the equation for a line.
Complete Question:
Find the value of x that will make L||M in the given options: (a) 6x + 8, (b) 4x + 2, (c) M, (d) x = [?].