Final answer:
To simplify the expression (Xᵃ/x · x⁻ᵇ)ᵃ⁻ᵇ · (Xᵇ/x · x⁻ᶜ)ᵇ⁻ᶜ · (xᶜ/x · x⁻ᵃ)ᶜ⁻ᵃ, we need to use the properties of exponents and simplify each term. The expression simplifies to (X^b · x^(c-a))^(c-a), which corresponds to option (d).
Step-by-step explanation:
To simplify the expression (Xᵃ/x · x⁻ᵇ)ᵃ⁻ᵇ · (Xᵇ/x · x⁻ᶜ)ᵇ⁻ᶜ · (xᶜ/x · x⁻ᵃ)ᶜ⁻ᵃ, we need to use the properties of exponents.
First, we can multiply the exponents when the bases are the same, which gives us:
(Xᵃ/x)ᵃ⁻ᵇ · (Xᵇ/x)ᵇ⁻ᶜ · (xᶜ/x)ᶜ⁻ᵃ
Next, we can simplify each term individually:
X^(a-(a-b)) · X^(b-(b-c)) · x^(c-(c-a))
Finally, we simplify further:
X^b · X^(c-a) · x^(c-a)
This simplifies to the expression (X^b · x^(c-a))^(c-a), so the correct option is (d) (X^b · x^(c-a))^(c-a).