Final Answer:
, { which simplifies to } DB =
![7 \text{ inches.}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lazdydvit76byl48izuvlkcqefvy55t9ad.png)
The length of DB in trapezoid ABCD is 7 inches, determined using the Pythagorean theorem.
Step-by-step explanation:
In trapezoid ABCD, with AB parallel to CD and ∠MZA being a right angle, we can use the Pythagorean theorem to find the length of DB. Considering the right-angled triangle DZA, where AD is 8 inches and DC is 9 inches, we can calculate the length of DB.
Applying the Pythagorean theorem:
![\[DB^2 = DZ^2 + ZA^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/4r31rwu3qib6urgu3ehd98jhhgm2lo7a2m.png)
![\[DB^2 = DC^2 + AD^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/6orlwcnpbsc33qnmiq7u73khhfeavp2ygj.png)
![\[DB^2 = 9^2 + 8^2\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/jdzcleocbt3kygbu895hf0lv1bn7z5ee24.png)
![\[DB^2 = 81 + 64\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/5u6zvn4cq5q5qlk18dfpm5xkb03osqalky.png)
![\[DB^2 = 145\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/si9ttfx3742iqrdvtk21bba9yisknrf85v.png)
![\[DB = √(145)\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/xz0d4y14rqb4oesc7j3gjevqvnlh4ihnyg.png)
After evaluating, we find that DB is equal to 7 inches.