Final answer:
To solve -4|x + 91| = -8, divide both sides by -4 and work with two possible scenarios: one where x + 91 = 2 and one where -(x + 91) = 2. Solve these scenarios to find the solutions.
Step-by-step explanation:
To solve the equation -4|x + 91| = -8, we can start by dividing both sides of the equation by -4 to get |x + 91| = 2. When we have an absolute value equation equal to a positive number, we can have two scenarios:
- |x + 91| = 2
- -(x + 91) = 2
In the first scenario, we can remove the absolute value signs by splitting it into two cases:
- x + 91 = 2
- -(x + 91) = 2
Solving these cases will give us the possible values of x. In the end, we obtain x = -93 or x = -89 as the solutions of the original equation.