1.
the derivative is

2.
the derivative is
![-(x^5 + \cos(x)) \].](https://img.qammunity.org/2024/formulas/mathematics/high-school/3gxvgu8p6axan1utycozle8v5zkwos55gw.png)
3.
the derivative is
![-((2x)^2)/((2x)^2 + 4) \].\\](https://img.qammunity.org/2024/formulas/mathematics/high-school/dx6ydmtk4a6ckdpg64xecegi1rt8udermo.png)
Certainly! Let's solve each of the given problems using the Fundamental Theorem of Calculus Part 1 (FTC Part 1).
1. Problem:
![\[ (d)/(dx) \int\limits_4^x (ds)/(√(4-s^2)) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/18eo9r26jg7ti2ajnot7vmldkjjg9cqmis.png)
Solution:
Let

According to FTC Part 1,
, where \( a \) is a constant.
Therefore,
![\[ (d)/(dx) \int\limits_4^x (ds)/(√(4-s^2)) = (1)/(√(4-x^2)) \].](https://img.qammunity.org/2024/formulas/mathematics/high-school/rcwmyf24b30bnn0dv0qapzkiyw543jh1gi.png)
2. Problem:
![\[ (d)/(dx) \int\limits_x^3 (t^5 + \cos(t)) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/kht35f249a0xe4vgjne6irkjkq5ek2anjm.png)
Solution:
Let

According to FTC Part 1,
where \( a \) is a constant.
Therefore,
=
![-(x^5 + \cos(x)) \].](https://img.qammunity.org/2024/formulas/mathematics/high-school/3gxvgu8p6axan1utycozle8v5zkwos55gw.png)
3. Problem:
![\[ (d)/(dx) \int\limits_(2x)^1 (t^2)/(t^2 + 4) \, dt \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/n3o62ukevetyfu1btj3xr5c9rtykkmui49.png)
Solution:
Let

By FTC Part 1,
![-((2x)^2)/((2x)^2 + 4) \].\\](https://img.qammunity.org/2024/formulas/mathematics/high-school/dx6ydmtk4a6ckdpg64xecegi1rt8udermo.png)
These derivatives are calculated using the FTC Part 1 and are based on the fundamental properties of definite integrals and their connections to derivatives.
The probable question may be:
use the FTC Part 1 to find each derivative
d/dx\int\limits^x_4 {\frac{ds}{\sqrt{4-s^2} } }
d/dx\int\limits^3_x ({t^5+cost }) dt
d/dx\int\limits^2x_1 {\frac{t^2}{t^2+4 } }dt