130k views
5 votes
I am not sure how to use the FTC Part 1 for any of these three problems can I please have some help on them thank you!

I am not sure how to use the FTC Part 1 for any of these three problems can I please-example-1
User Acelent
by
8.0k points

1 Answer

0 votes

1.
\[ (d)/(dx) \int\limits_4^x (ds)/(√(4-s^2)) \]. the derivative is
(1)/(√(4-x^2))

2.
\[ (d)/(dx) \int\limits_x^3 (t^5 + \cos(t)) \, dt \] the derivative is
-(x^5 + \cos(x)) \].

3.
\[ (d)/(dx) \int\limits_(2x)^1 (t^2)/(t^2 + 4) \, dt \] the derivative is
-((2x)^2)/((2x)^2 + 4) \].\\

Certainly! Let's solve each of the given problems using the Fundamental Theorem of Calculus Part 1 (FTC Part 1).

1. Problem:


\[ (d)/(dx) \int\limits_4^x (ds)/(√(4-s^2)) \]

Solution:

Let
\( F(t) = \int\limits_4^t (ds)/(√(4-s^2)) \).

According to FTC Part 1,
\( (d)/(dx) \int\limits_a^x f(t) \, dt = f(x) \), where \( a \) is a constant.

Therefore,


\[ (d)/(dx) \int\limits_4^x (ds)/(√(4-s^2)) = (1)/(√(4-x^2)) \].

2. Problem:


\[ (d)/(dx) \int\limits_x^3 (t^5 + \cos(t)) \, dt \]

Solution:

Let
\( G(t) = \int\limits_t^3 (u^5 + \cos(u)) \, du \).

According to FTC Part 1,
\( (d)/(dx) \int\limits_a^x f(t) \, dt = -f(x) \),where \( a \) is a constant.

Therefore,


\[ (d)/(dx) \int\limits_x^3 (t^5 + \cos(t)) \, dt=
-(x^5 + \cos(x)) \].

3. Problem:


\[ (d)/(dx) \int\limits_(2x)^1 (t^2)/(t^2 + 4) \, dt \]

Solution:

Let
\( H(t) = \int\limits_(2t)^1 (u^2)/(u^2 + 4) \, du \).

By FTC Part 1,


\[ (d)/(dx) \int\limits_(2x)^1 (t^2)/(t^2 + 4) \, dt =
-((2x)^2)/((2x)^2 + 4) \].\\

These derivatives are calculated using the FTC Part 1 and are based on the fundamental properties of definite integrals and their connections to derivatives.

The probable question may be:

use the FTC Part 1 to find each derivative

d/dx\int\limits^x_4 {\frac{ds}{\sqrt{4-s^2} } }

d/dx\int\limits^3_x ({t^5+cost }) dt

d/dx\int\limits^2x_1 {\frac{t^2}{t^2+4 } }dt

User JKostikiadis
by
7.6k points