197k views
1 vote
If In a = 2, ln b = 3, and ln c = 5, evaluate the following:

(a) In
-2
a
b¹c-2
(b) In √b²c¹a-3
(c)
= 3
=
In(a²6³)
In (bc)-³
(d) (In c¹) (in)
502
||
>
>
OF
8
OF

User Nonlux
by
8.1k points

1 Answer

1 vote


(a) \(\ln\left((1)/(e^3)\right) = -3\),

(b)
\(\ln\left(\sqrt{e^(8)}\right) = 8\),

(c)
\(\ln\left(-(1)/(54)\right) = -\ln(54)\),

(d)
\((\ln 502) = \ln 502\).

Let's break down and evaluate each expression using the given values:

Given:


\[ a = 2, \quad \ln b = 3, \quad \ln c = 5 \]

(a)
\[ \ln\left((a^(-2))/(b^(1)c^(-2))\right) \]

Substitute the values:


\[ \ln\left((2^(-2))/(e^3 \cdot e^(-2))\right) \]

Simplify:


\[ \ln\left((1)/(e^(3-2+2))\right) \]


\[ \ln\left((1)/(e^3)\right) \]


\[ \ln(e^(-3)) \]


\[ -3 \]


(b) \[ \ln\left(\sqrt{b^2c^1a^(-3)}\right) \]

Substitute the values:


\[ \ln\left(\sqrt{e^6 \cdot e^5 \cdot e^(-3)}\right) \]

Simplify:


\[ \ln\left(\sqrt{e^(6+5-3)}\right) \]


\[ \ln(e^8) \]


\[ 8 \]


\[ \ln\left((a^2)/(6^3)\right) \]

Substitute the values:


\[ \ln\left((2^2)/(6^3)\right) \]

Simplify:


\[ \ln\left((4)/(216)\right) \]


\[ \ln\left((1)/(54)\right) \]


\[ \ln(54^(-1)) \]


\[ -\ln(54) \]


\[ (\ln c^1) \cdot (\ln 502) \]

Substitute the values:


\[ (5^1) \cdot (\ln 502) \]


\[ \ln 502 \]

In summary:

(a)
\(-3\)

(b)
\(8\)

(c)
\(-\ln(54)\)

(d)
\(\ln 502\)

User Andrei Verdes
by
7.5k points