the sum
is equal to -i. So, the correct option is D.
Let's evaluate the series
:
![\[ \sum_(n=1)^5 \left((1)/(i)\right)^n = \left((1)/(i)\right)^1 + \left((1)/(i)\right)^2 + \left((1)/(i)\right)^3 + \left((1)/(i)\right)^4 + \left((1)/(i)\right)^5 \]](https://img.qammunity.org/2024/formulas/mathematics/college/ddmzkpr2f9ghj14qhngbxacpkpvrdlpom5.png)
Simplify each term:
![\[ = (1)/(i) + (1)/(-1) + (1)/(-i) + (1)/(1) + (1)/(i) \]](https://img.qammunity.org/2024/formulas/mathematics/college/dxbdlbdo4izzgo21ul8ts3jmbyfb606hjk.png)
Combine like terms:
![\[ = (1)/(-i) + (1)/(1) + (1)/(i) \]](https://img.qammunity.org/2024/formulas/mathematics/college/krawsk1jez9912e00ql98htuqyr3smjzfw.png)
Now, to add these fractions, we need a common denominator. The common denominator is
, so:
![\[ = (-i)/(-i \cdot i) + (i)/(i \cdot i) + (1)/(i \cdot -i) \]](https://img.qammunity.org/2024/formulas/mathematics/college/ln0ypr17qx4q0wjbvy1tz7diuwrwlw6cgz.png)
Combine the numerators:
![\[ = (-i + i - 1)/(-i^2) \]](https://img.qammunity.org/2024/formulas/mathematics/college/1ejvhsaiolbg1vsnxrzsfxy9prpbixr21v.png)
Simplify the numerator and replace
with -1:
![\[ = (-1)/(-(-1)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/gwrxbivnbv27zo0m39iftlu2bqejcnngj3.png)
Finally:
![\[ = (-1)/(1) \]](https://img.qammunity.org/2024/formulas/mathematics/college/s0dmcumfmrxhf6rdz8bwi404drblkdfw6v.png)
So, the sum
is equal to -1. Therefore, the correct option is:
![\[ \text{d. -i} \]](https://img.qammunity.org/2024/formulas/mathematics/college/3yj7dm7uu4cvcj9y10ck0ypr7pzs0e427o.png)