165k views
0 votes
Solve this mcq ?
this is about series and sequesnces

Solve this mcq ? this is about series and sequesnces-example-1

1 Answer

3 votes

the sum
\( \sum_(n=1)^5 \left((1)/(i)\right)^n \) is equal to -i. So, the correct option is D.

Let's evaluate the series
\( \sum_(n=1)^5 \left((1)/(i)\right)^n \):


\[ \sum_(n=1)^5 \left((1)/(i)\right)^n = \left((1)/(i)\right)^1 + \left((1)/(i)\right)^2 + \left((1)/(i)\right)^3 + \left((1)/(i)\right)^4 + \left((1)/(i)\right)^5 \]

Simplify each term:


\[ = (1)/(i) + (1)/(-1) + (1)/(-i) + (1)/(1) + (1)/(i) \]

Combine like terms:


\[ = (1)/(-i) + (1)/(1) + (1)/(i) \]

Now, to add these fractions, we need a common denominator. The common denominator is
\( i \), so:


\[ = (-i)/(-i \cdot i) + (i)/(i \cdot i) + (1)/(i \cdot -i) \]

Combine the numerators:


\[ = (-i + i - 1)/(-i^2) \]

Simplify the numerator and replace
\( i^2 \) with -1:


\[ = (-1)/(-(-1)) \]

Finally:


\[ = (-1)/(1) \]

So, the sum
\( \sum_(n=1)^5 \left((1)/(i)\right)^n \) is equal to -1. Therefore, the correct option is:


\[ \text{d. -i} \]

User Michael Carman
by
8.5k points