228k views
1 vote
A washer and dryer cost $694 in total. The washer costs $56 less than the dryer. What is the cost of the dryer?

a) $325
b) $350
c) $370
d) $375

1 Answer

5 votes

Final answer:

The cost of the dryer is $375. We find this by setting up an equation based on the given information that the washer costs $56 less and the total cost is $694, then solving for the dryer's cost.

Step-by-step explanation:

The total cost of both the washer and the dryer is $694. We know that the washer costs $56 less than the dryer. We can set up an equation to solve for the cost of the dryer. Let's call the dryer's cost D. The washer's cost is then D - $56. Adding the two costs together gives us the total cost which is $694.

Now we have the equation D + (D - $56) = $694. Simplifying this, we get 2D - $56 = $694. Adding $56 to both sides gives us 2D = $750. Dividing both sides by 2 to find D, we get that D = $375.

Therefore, the cost of the dryer is $375, which corresponds to option (d).

User Peter Robert
by
9.4k points