Answer:
The slope of the tangent m = -0.0833
Explanation:
Step(i):-
Given that the curve
x y - 2y² + x² = -5 ...(i)
Differentiating equation (i) with respective to 'x', we get
![x((dy)/(dx) )+y (1) -2(2y)(dy)/(dx) + 2x=0](https://img.qammunity.org/2022/formulas/mathematics/college/j6ykq299911rx4z2rjt3d591f5iizzal5r.png)
![x((dy)/(dx) ) -2(2y)(dy)/(dx) = -2x-y](https://img.qammunity.org/2022/formulas/mathematics/college/97rgh92a8colkxq8qe58o41jkpxurs5b83.png)
![(x -4y)(dy)/(dx) = -2x-y](https://img.qammunity.org/2022/formulas/mathematics/college/zxn2ryy5cdlu9dpk3bl2w6x7abzv05njat.png)
![(dy)/(dx) = (-2x-y)/(x-4y)](https://img.qammunity.org/2022/formulas/mathematics/college/rng7nsovitniezmboaj2he24s4zbmk3yqe.png)
Step(ii):-
The slope of the tangent
![((dy)/(dx))_(1,-1.5) = (-2x-y)/(x-4y)](https://img.qammunity.org/2022/formulas/mathematics/college/hi07dj3r1wpqnnjonot66ygnhvaw0wd7gs.png)
![((dy)/(dx))_(1,-1.5) = (-2(1)-(-1.5))/(1-4(-1.5))](https://img.qammunity.org/2022/formulas/mathematics/college/fe7zik7plnndnj8t7amsllskzyaob978fo.png)
m =
![(-2+1.5)/(1+6)](https://img.qammunity.org/2022/formulas/mathematics/college/ute4su80h2dofjd1gga2kz5s5x7dt08j6r.png)
![m = (-0.5)/(6) = -0.083](https://img.qammunity.org/2022/formulas/mathematics/college/r684tqpu10uawlp2y2fmaa8werqsbovmyg.png)
The slope of the tangent m = -0.0833