Final answer:
To find the coefficients of a cubic Hermite curve, we can use the formula H(t) = (2t³ - 3t² + 1)P₀ + (t³ - 2t² + t)P'₀ + (-2t³ + 3t²)P₁ + (t³ - t²)P'₁. Substituting the given values and expanding the equations, we find the coefficients of the cubic Hermite curve.
Step-by-step explanation:
To find the coefficients of a cubic Hermite curve, we can use the following formula:
H(t) = (2t³ - 3t² + 1)P₀ + (t³ - 2t² + t)P'₀ + (-2t³ + 3t²)P₁ + (t³ - t²)P'₁
Substituting the given values, we get:
H(t) = (2t³ - 3t² + 1)(0,1) + (t³ - 2t² + t)(93.5, 0) + (-2t³ + 3t²)(5,1) + (t³ - t²)(0, -10)
Expanding and simplifying the equations, we find the coefficients of the cubic Hermite curve to be:
a₀ = (2t³ - 3t² + 1) = 2t³ - 3t² + 1
a₁ = (t³ - 2t² + t) = t³ - 2t² + t
b₀ = (-2t³ + 3t²) = -2t³ + 3t²
b₁ = (t³ - t²) = t³ - t²