Final answer:
The length of AD¯ is 5√10 cm.
Step-by-step explanation:
In trapezoid ABCD, AD¯ ∥ BC¯, BC = 5 cm, m∠ACD = m∠ABC = 90°, m∠BAC = 30°. To find the length of AD¯, we can use the cosine rule.
In triangle ABC, using the cosine rule: AB² = AC² + BC² - 2(AC)(BC)cos(90°)
Since AD¯ and BC¯ are parallel, triangle ABC and triangle ACD are similar. Therefore, AB = AD.
Substituting the values, we have:
AD² = AC² + BC² - 2(AC)(BC)cos(90°)
AD² = AC² + BC²
AD² = (3R)² + 5²
AD² = 9R² + 25
The length of AD¯ is √(9R² + 25).
Given that BC = 5 cm, the length of AD¯ is therefore √(9*(5²) + 25) = √(225 + 25) = √250 = 5√10 cm.