Final Answer:
The values of A and B are A=6 and B=3 (Option d). because The values of A and B (A=6, B=3) make the powers of x and y in the given expression equal, satisfying the equation.
Step-by-step explanation:
The given expression is:
![\[\frac{{10x^3y^5 \cdot 4x^2y^(-2)}}{{20x^(-4)y^B}^(A)} = \frac{{y^(12)}}{{8x^(27)}}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/fsp46j9mf0bugluennopprh6zjwjpgw5ci.png)
To find the values of A and B, let's simplify the expression step by step.
First, combine the like terms in the numerator and denominator:
![\[\frac{{40x^5y^3}}{{20x^(-4)y^B}^(A)} = \frac{{y^(12)}}{{8x^(27)}}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pxjkqaxx4u7l18qx69040oyt3cqdbahm6u.png)
Now, simplify the powers:
![\[\frac{{40x^5y^3}}{{20x^(-4)y^B}^(A)} = \frac{{y^(12)}}{{8x^(27)}}\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pxjkqaxx4u7l18qx69040oyt3cqdbahm6u.png)
To equate the powers of x and y on both sides, we get two equations:
![\[2 = 27 \implies x: A=6\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/cpjaijxzwonlkyb0s7zuq5fcivx3pwagf9.png)
![\[3 - B = 12 \implies y: B=3\]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ayoh6b5c9mb12586pn6e55wzjlkdahycxj.png)
Therefore, the correct values are A=6 and B=3, which corresponds to option d.
Therefore, the correct answer is option D