166k views
4 votes
If sin A = 1/3 , find tan 3A and cos 3A .

a) tan 3A = 3/10 , cos 3A = 27/100

b) tan 3A = 1/10 , cos 3A = 27/100

c) tan 3A = 3/10 , cos 3A = 9/10

d) tan 3A = 1/10 , cos 3A = 9/10

User Ellery
by
6.9k points

1 Answer

4 votes

Final answer:

To find tan 3A and cos 3A, we can use trigonometric identities. Using the value of sin A = 1/3, we can use the identities tan 2A = (2tan A) / (1 - tan² A) and cos 2A = cos² A - sin² A to find the values of tan 3A and cos 3A.

Step-by-step explanation:

To find tan 3A and cos 3A, we'll use trigonometric identities. First, we know that sin A = 1/3. Using the identity tan 2A = (2tan A) / (1 - tan² A), we can find tan 3A. Plugging in tan A = sin A / cos A = (1/3) / sqrt(1 - (1/3)²) = 1/ √8 / 3 = √8 / 3, we get tan 3A = (2 * (√8 / 3)) / (1 - (√8 / 3)²) = (2√8 / 3) / (1 - 8 / 9) = (2√8 / 3) / (1/9) = (2√8 / 3) * 9 = 6√8.

Next, using the identity cos 2A = cos² A - sin² A, we can find cos 3A. Plugging in cos A = sqrt(1 - sin² A) = √(1 - 1/9) = √8/3, we get cos 3A = cos² A - sin² A = (√8/3)² - (1/3)² = 8/3 - 1/9 = 24/9 - 1/9 = 23/9.

User IamAlexAlright
by
8.4k points

No related questions found

Welcome to QAmmunity.org, where you can ask questions and receive answers from other members of our community.

9.4m questions

12.2m answers

Categories