Given:
The two points on a coordinate plane are C(-5,-1) and D(0,3).
To find:
The distance between C and D.
Solution:
Distance formula:
![d=√((x_2-x_1)^2+(y_2-y_1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/56st313bklvuad5kmg37orzosnah8k5ru7.png)
Using the distance formula, the distance between C(-5,-1) and D(0,3) is
![CD=√((0-(-5))^2+(3-(-1))^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/i5m96kjfix36165iailelna2nmyg1474tc.png)
![CD=√((0+5)^2+(3+1)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/5c55qh42lcg71vfig4pqqd5gqzi4w9qhrt.png)
![CD=√((5)^2+(4)^2)](https://img.qammunity.org/2022/formulas/mathematics/high-school/80c2lwkztac44jakqqm8a8s7zvto5y6v1k.png)
![CD=√(25+16)](https://img.qammunity.org/2022/formulas/mathematics/high-school/ooecfc14s227bkxrm32ivqsbny4zicw5ed.png)
On further simplification, we get
![CD=√(41)](https://img.qammunity.org/2022/formulas/mathematics/high-school/kdqve0oe5p8hecss29r0p9wgueil9dccq9.png)
![CD=6.40312424](https://img.qammunity.org/2022/formulas/mathematics/high-school/wzp05qe2687gckii8jyetcprek9bo89dla.png)
![CD\approx 6.40](https://img.qammunity.org/2022/formulas/mathematics/high-school/3o2d1wx07htwbk2e4jgo6dvvzcsv1dad1w.png)
Therefore, the distance between C and D is 6.40 units.