Given:
Triangle EFG is similar to triangle HIJ.
To find:
The measure of side IJ.
Solution:
We know that, corresponding sides of similar triangles are proportional.
Triangle EFG is similar to triangle HIJ.
![(EF)/(HI)=(FG)/(IJ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/oxkxermdtid6uc4j99cs1mkj30cyf78cbc.png)
Putting the given values, we get
![(7)/(32)=(4)/(IJ)](https://img.qammunity.org/2022/formulas/mathematics/high-school/4rk06pqudnzhdjpgb9dpe67wxb20l7r8lk.png)
![7* IJ=4* 32](https://img.qammunity.org/2022/formulas/mathematics/high-school/yirfuzgreskkle0e6fiid3sj5f6mtlqvx3.png)
![IJ=(128)/(7)](https://img.qammunity.org/2022/formulas/mathematics/high-school/bxd0gad7mwkxxmbik4hjduchctdop9i8wa.png)
![IJ=18.2857](https://img.qammunity.org/2022/formulas/mathematics/high-school/6h2gbv1x71c8lfh4sr4xhl910nz8l5obi4.png)
![IJ\approx =18.3](https://img.qammunity.org/2022/formulas/mathematics/high-school/qwzfwb4mzbgi9d6p7xq9kqeuh7ttyg952r.png)
Therefore, the measure of side IJ is 18.3 units.