Final answer:
The equation ((2cos A + 1) + (2cos A - 1)(2cos 2A - 1) = 2cos 4A + 1) is false.
Step-by-step explanation:
To determine whether the equation ((2cos A + 1) + (2cos A - 1)(2cos 2A - 1) = 2cos 4A + 1) is true or false, we can simplify both sides of the equation and compare them.
Starting with the left side:
(2cos A + 1) + (2cos A - 1)(2cos 2A - 1) =
2cos A + 1 + 2(cos A)(cos 2A) - (2cos A - 1) =
2cos A + 1 + 2(cos A)(cos 2A) - 2cos A + 1 =
2(cos A)(cos 2A) + 2 =
2[cos A(cos 2A + 1)] + 2 =
2cos 4A + 2
Now, we simplify the right side:
2cos 4A + 1
Since the right side is 2cos 4A + 1 and the left side is 2cos 4A + 2, the equation ((2cos A + 1) + (2cos A - 1)(2cos 2A - 1) = 2cos 4A + 1) is false.