Final answer:
The converse of a conditional statement is valid if it is also true.
Step-by-step explanation:
The question is asking if the converse of the given sequent is valid or not. To determine this, we need to understand what the converse is. The converse of a conditional statement is formed by interchanging the hypothesis and conclusion. In this case, if the given sequent is in the form 'If A then B', the converse would be 'If B then A'.
To determine if the converse is valid, we can look at an example. Let's say the given sequent is 'If a number is even, then it is divisible by 2'. The converse would be 'If a number is divisible by 2, then it is even'. In this case, the converse is also true, because any number that is divisible by 2 is indeed even. Therefore, the converse of the given sequent is valid.