135k views
4 votes
Find $\left(\frac{1}{2}\right)^{8} \cdot \left(\frac{3}{4}\right)^{-3}$.

1 Answer

3 votes

The value of
\(\left((1)/(2)\right)^(8) \cdot \left((3)/(4)\right)^(-3)\) is
\[ (64)/(6912) \].

To find the value of
\(\left((1)/(2)\right)^(8) \cdot \left((3)/(4)\right)^(-3)\), you can simplify each term separately and then multiply them together.

1. Simplify
\(\left((1)/(2)\right)^(8)\):


\[ \left((1)/(2)\right)^(8) = (1)/(2^(8)) = (1)/(256) \]

2. Simplify
\(\left((3)/(4)\right)^(-3)\):


\[ \left((3)/(4)\right)^(-3) = (1)/(\left((3)/(4)\right)^(3)) = (1)/((27)/(64)) = (64)/(27) \]

Now, multiply the simplified terms:


\[ (1)/(256) \cdot (64)/(27) \]

To multiply fractions, multiply the numerators together and the denominators together:


\[ (1 \cdot 64)/(256 \cdot 27) \]

Simplify the fraction:


\[ (64)/(6912) \]

So,
\(\left((1)/(2)\right)^(8) \cdot \left((3)/(4)\right)^(-3) = (64)/(6912) \).

the probable question may be: "Find the value of:
\(\left((1)/(2)\right)^(8) \cdot \left((3)/(4)\right)^(-3)\)"

User Bruno Guarita
by
8.5k points