191k views
0 votes
A puck with a certain angular momentum hits a wall and bounces off. During the collision, the puck exerts a force on the wall and vice versa. I am inclined to think that the rotational motion of the puck generates a friction force, akin to how a car tire interacts with the road, leading to a change in the velocity vector parallel to the wall.

Could someone clarify if my understanding is correct? Are there specific limits or thresholds to how significantly the velocity can be affected by these factors?

1 Answer

5 votes

Final answer:

Yes, your understanding is correct! When a puck with angular momentum hits a wall and bounces off, there is a friction force generated similar to how a car tire interacts with the road. This friction force can cause a change in the velocity vector parallel to the wall. The magnitude of the velocity change depends on various factors such as the initial angular momentum of the puck, the collision duration, and the coefficient of friction between the puck and the wall.

Step-by-step explanation:

Yes, your understanding is correct! When a puck with angular momentum hits a wall and bounces off, there is a friction force generated similar to how a car tire interacts with the road. This friction force can cause a change in the velocity vector parallel to the wall.

The magnitude of the velocity change depends on various factors such as the initial angular momentum of the puck, the collision duration, and the coefficient of friction between the puck and the wall. Generally, a higher initial angular momentum and a longer collision duration can result in a greater change in velocity.

It's important to note that while the rotational motion of the puck can generate a friction force, it doesn't directly affect the rotational motion of the puck itself unless there is torque involved.

User Nathan Williams
by
8.2k points