Answer:
-6 (2 y^2 + 5)
Explanation:
Simplify the following:
3 (-y^2 - 2 (5 - y^2)) - 15 y^2
Hint: | Distribute -2 over 5 - y^2.
-2 (5 - y^2) = 2 y^2 - 10:
3 (2 y^2 - 10 - y^2) - 15 y^2
Hint: | Group like terms in 2 y^2 - y^2 - 10.
Grouping like terms, 2 y^2 - y^2 - 10 = (2 y^2 - y^2) - 10:
3 (2 y^2 - y^2) - 10 - 15 y^2
Hint: | Combine like terms in 2 y^2 - y^2.
2 y^2 - y^2 = y^2:
3 (y^2 - 10) - 15 y^2
Hint: | Distribute 3 over y^2 - 10.
3 (y^2 - 10) = 3 y^2 - 30:
3 y^2 - 30 - 15 y^2
Hint: | Group like terms in 3 y^2 - 15 y^2 - 30.
Grouping like terms, 3 y^2 - 15 y^2 - 30 = (3 y^2 - 15 y^2) - 30:
(3 y^2 - 15 y^2) - 30
Hint: | Combine like terms in 3 y^2 - 15 y^2.
3 y^2 - 15 y^2 = -12 y^2:
-12 y^2 - 30
Hint: | Factor out the greatest common divisor of the coefficients of -12 y^2 - 30.
Factor -6 out of -12 y^2 - 30:
Answer: -6 (2 y^2 + 5)