This expression
represents the average rate of change of g(x) on the interval [4, b].
The average rate of change of a function g(x) over an interval [4, b] is calculated using the formula:
![\[ \text{Average Rate of Change} = (g(b) - g(4))/(b - 4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/s2zq23z6mhu9vkmyl7n3zh794b2vd1rpyk.png)
For the given function
, let's find g(b) :
![\[ g(b) = 2b^2 - 9 \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/44dngtwewh4may9z5mkqxhzogkklpcq47l.png)
Now, plug the values into the formula:
![\[ \text{Average Rate of Change} = (2b^2 - 9 - (2(4)^2 - 9))/(b - 4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/lgn5fo2226trjgomo4y14p5di8hdbro64y.png)
Simplify the expression:
![\[ \text{Average Rate of Change} = (2b^2 - 25 - (32 - 9))/(b - 4) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/sj0u6lqkxm7yewk5empv6reukpw73acg23.png)
Combine like terms:
![\[ \text{Average Rate of Change} = (2b^2 - 25 - 23)/(b - 4) \]\\ \text{Average Rate of Change} = (2b^2 - 48)/(b - 4)](https://img.qammunity.org/2024/formulas/mathematics/high-school/zae0dhm14pixhnk3k67gwjvedwvyxz0q13.png)
This expression represents the average rate of change of g(x) on the interval [4, b].