45.9k views
0 votes
The ionization constant of lactic acid, (CH₃CH(OH)CO₂H) ((Kₐ = 1.36 × 10^−4)). If 20.0 g of lactic acid is used to make a solution with a volume of 1.00 L, what is the concentration of hydronium ion in the solution?

a) 1.36 × 10⁻4 , M
b) 2.72 × 10⁻4 , M
c) 5.44 × 10⁻4 , M
d) 1.08 × 10⁻3, M

User MrMuppet
by
7.7k points

1 Answer

2 votes

Final answer:

The concentration of hydronium ion
(\(H_3O^+\)) in the solution is approximately
\(5.44 * 10^(-4) \, \text{M}\). Therefore, the correct answer is option
(c) \(5.44 * 10^(-4) \, \text{M}\).

Step-by-step explanation:

To determine the concentration of hydronium ion
(\(H_3O^+\)) in the solution, we can use the ionization constant
(\(K_a\)) of lactic acid. The balanced chemical equation for the ionization of lactic acid is:


\[ \text{CH}_3\text{CH(OH)CO}_2\text{H} \rightleftharpoons \text{CH}_3\text{CH(OH)CO}_2^- + \text{H}_3\text{O}^+ \]

Given that the ionization constant
(\(K_a\)) is
\(1.36 * 10^(-4)\), we can set up an ICE (initial, change, equilibrium) table for the ionization reaction:


\[\begin{array}{cccc}& \text{CH}_3\text{CH(OH)CO}_2\text{H} & \rightleftharpoons & \text{CH}_3\text{CH(OH)CO}_2^- & + & \text{H}_3\text{O}^+ \\\text{Initial (M)} & x & & 0 & & 0 \\\text{Change (M)} & -x & & +x & & +x \\\text{Equilibrium (M)} & x & & x & & x \\\end{array}\]

The ionization constant
(\(K_a\)) is given by the expression:


\[ K_a = \frac{\text{[CH}_3\text{CH(OH)CO}_2^-]\text{[H}_3\text{O}^+]}{\text{[CH}_3\text{CH(OH)CO}_2\text{H}]} \]

Substitute the equilibrium concentrations into the
\(K_a\) expression:


\[ 1.36 * 10^(-4) = (x * x)/(0.020 - x) \]

Since
\(x\) is expected to be small compared to 0.020, we can approximate
\(0.020 - x\) as 0.020. Solve for \(x\):


\[ x^2 = 1.36 * 10^(-4) * 0.020 \]


\[ x = \sqrt{1.36 * 10^(-4) * 0.020} \]


\[ x \approx 5.44 * 10^(-4) \, \text{M} \]

So, the concentration of hydronium ion
(\(H_3O^+\)) in the solution is approximately
\(5.44 * 10^(-4) \, \text{M}\). Therefore, the correct answer is option
(c) \(5.44 * 10^(-4) \, \text{M}\).

User Sel
by
7.7k points