Answer:
Explanation:
Given that:
all coins are same;
The same implies that the number of the non-negative integral solution of the equation:
![x_1+x_2+x_3+x_4+x_5 = 35](https://img.qammunity.org/2022/formulas/mathematics/college/peso2xly5aqmqkz42siomj9adaqd3u5rij.png)
![x_1 > 0 ; \ \ \ x_1 \ \varepsilon \ Z](https://img.qammunity.org/2022/formulas/mathematics/college/5zhm04cns7gyel7f0m96mk3xzcv0waviu2.png)
Thus, the number of the non-negative integral solution is:
![^((35+3-1))C_(5-1) = ^(39)C_4](https://img.qammunity.org/2022/formulas/mathematics/college/5s9xhw8vi1g40vvi9dff94dkm72wq0q73r.png)
(b)
Here all coins are distinct.
So; the number of distribution appears to be an equal number of ways in arranging 35 different objects as well as 5 - 1 - 4 identical objects
i.e.
![= ((35+4)!)/(4!)](https://img.qammunity.org/2022/formulas/mathematics/college/ftqm47jx7perlariq8xq1sniigxiwfvfmj.png)
![= (39!)/(4!)](https://img.qammunity.org/2022/formulas/mathematics/college/fn9r9v3kjfrlehjnd5r3gassythjn0iea8.png)
(c)
Here; provided that the coins are the same and each grandchild gets the same.
Then;
![x_1+x_2+x_3+x_4+x_5 = 35](https://img.qammunity.org/2022/formulas/mathematics/college/peso2xly5aqmqkz42siomj9adaqd3u5rij.png)
![x_1 > 0 ; \ \ \ x_1 \ \varepsilon \ Z](https://img.qammunity.org/2022/formulas/mathematics/college/5zhm04cns7gyel7f0m96mk3xzcv0waviu2.png)
![x_1=x_2=x_3=x_4=x_5](https://img.qammunity.org/2022/formulas/mathematics/college/uxdllrudzo9pj0reu3z3n6wvd3e2pwf5kv.png)
![5x_1 = 35\\\\ x_1= (35)/(5) \\ \\ x_1= 7](https://img.qammunity.org/2022/formulas/mathematics/college/rzxqdibqxltu4iuw4ria5fk3tcsqy9hv7k.png)
Thus, each child will get 7 coins
(d)
Here; we need to divide the 35 coins into 5 groups, this process will be followed by distributing the coin.
The number of ways to group them into 5 groups =
![(35!)/((7!)^55!)](https://img.qammunity.org/2022/formulas/mathematics/college/k1sre7unxlj9fy8qsmo579o453gcfs3pqi.png)
Now, distributing them, we have:
![\mathbf{(35!)/((7!)^55!) * 5!= (35!)/((7!)^5)}](https://img.qammunity.org/2022/formulas/mathematics/college/sjkis3jol2bsgih2rv9laixyq6kcplsqns.png)