211k views
5 votes
Compare your answer to the value Bohr proposed for the n=1 state.

a) It is equal to Bohr's proposed value.
b) It is less than Bohr's proposed value.
c) It is greater than Bohr's proposed value.
d) The relationship cannot be determined.

1 Answer

0 votes

Final answer:

The magnitude of the angular momentum for an electron in the n = 1 state in the Bohr model is equal to h / (2 * pi), which was proposed by Bohr.

The correct answer is A.

Step-by-step explanation:

In the Bohr model of the hydrogen atom, the magnitude of the angular momentum for an electron in the n = 1 state is given by the equation:

L = n * h / (2 * pi),


where L is the magnitude of the angular momentum, n is the quantum number, h is Planck's constant, and pi is a mathematical constant.

In this case, for the n = 1 state, the quantum number is 1, so the magnitude of the angular momentum is:

L = 1 * h / (2 * pi) = h / (2 * pi).

Bohr proposed that the magnitude of the angular momentum for an electron in the n = 1 state is h / (2 * pi). Comparing this to the calculated value, we can see that the answer is a) It is equal to Bohr's proposed value.

User Codybartfast
by
7.6k points