Answer:
Dimensions: 0.4 by 3.2 by 1.2
Explanation:
I'm assuming here that we are cutting out squares out of each of the metal's corners:
Let x = the length of each cut-out square,
Each base (of the desired net square folded) is 4-2x, and 2-2x respectively,
Volume = x(4-2x)(2-2x)
= 4x^3 - 12x + 8x
Now we take the derivative:
![(d)/(dx)\left[4x^3-12x^2+8x\right]\\\\= (d)/(dx)\left(4x^3\right)-(d)/(dx)\left(12x^2\right)+(d)/(dx)\left(8x\right)\\\\= 12x^2-24x+8](https://img.qammunity.org/2022/formulas/mathematics/high-school/ehr0832nb6u4fpw251u28edckfgkccppyg.png)
We equate to 0 (0 for max volume), and solve using the quadratic formula:
![12x^2-24x+8=0,\\\\x_(1,\:2)=(-\left(-24\right)\pm √(\left(-24\right)^2-4\cdot \:12\cdot \:8))/(2\cdot \:12)\\\\= (-\left(-24\right)\pm \:8√(3))/(2\cdot \:12)\\\\\mathrm{Separate\:the\:solutions}:\\\\x_1=(-\left(-24\right)+8√(3))/(2\cdot \:12),\:x_2=(-\left(-24\right)-8√(3))/(2\cdot \:12)\\\\x =(3+√(3))/(3),\:x=(3-√(3))/(3)\\\\x=1.57735\dots ,\:x=0.42264\dots](https://img.qammunity.org/2022/formulas/mathematics/high-school/o8lb5vnenygrx4e2lx4llugm73hodve3gq.png)
So we approximate the side lengths to be 1.6 and 0.4 respectively. But when we plug in 1.6 for x, we get the volume as negative. Therefore x has to be 0.4.
Side lengths: 0.4, 4-2(0.4) => 3.2, 2-2(0.4) => 1.2