Answer:
--- sample variance
--- sample standard deviation
Explanation:
Given
![\begin{array}{cc}{Heights} & {Frequency} & {116.1-120.0} & {38} & {120.1-124.0} & {24} &{124.1-128.0} & {28} & {128.1-132.0} & {43} & {132.1-136.0} & {29} \ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/m0cxw3vue17sob33dpdwbp7rey2c28v712.png)
Required
Calculate the sample variance and sample standard deviation
First, we calculate the midpoint of each class:
![\begin{array}{ccc}{Heights} & {Frequency} & {m} &{116.1-120.0} & {38} & {118.05}& {120.1-124.0} & {24}& {122.05} &{124.1-128.0} & {28} &{126.05}& {128.1-132.0} & {43} & {130.05} &{132.1-136.0} & {29} &{134.05}\ \end{array}](https://img.qammunity.org/2022/formulas/mathematics/college/wq90kbsndhnajjp79crf5kg1n78kwmxcb5.png)
The midpoints are calculated by taking the average of the class intervals.
For instance:
Class 116.1 to 120.0 has a midpoint of
![m = (1)/(2)(116.1+120.0)](https://img.qammunity.org/2022/formulas/mathematics/college/8y72r7d5an57txqlmvchyr8kvzg3kyq3zl.png)
![m = (1)/(2)(236.1)](https://img.qammunity.org/2022/formulas/mathematics/college/egkwtuq3drz3wex893zlu8xkf7ruekzlqp.png)
![m = 118.05](https://img.qammunity.org/2022/formulas/mathematics/college/nrue4l7c3xoj6lvnsj0e3u41y8kr6beuke.png)
The same approach is applied to other classes.
Next, is to calculate the mean:
![\bar x = (\sum fx)/(\sum f)](https://img.qammunity.org/2022/formulas/mathematics/college/749tmen14y564hrdmyxwyv9dits4er183s.png)
In this case, it is:
![\bar x = (\sum fm)/(\sum f)](https://img.qammunity.org/2022/formulas/mathematics/college/zp3nv47l3wjkekoc37qhdyizi9g6t0515q.png)
Where
![m = midpoint](https://img.qammunity.org/2022/formulas/mathematics/college/79k3xjnvnrdbmjulgsqrtlhx6hyaor7twj.png)
So, we have:
![\bar x = (118.05*38+122.05*24+126.05*28+130.05*43+134.05*29)/(38+24+28+43+29)](https://img.qammunity.org/2022/formulas/mathematics/college/53fvvzjrif86mjg6cqs44dr6ktenp0capg.png)
![\bar x = (20424.10)/(162)](https://img.qammunity.org/2022/formulas/mathematics/college/pt5763ojpbjv99v3py9obcvzmx3yzl2rwn.png)
![\bar x = 126.07](https://img.qammunity.org/2022/formulas/mathematics/college/8c612wvsovn1l7yr51p1co4cj5itgq3rd9.png)
The sample variance (s^2) is:
![s^2 = (\sum(m - \bar x)^2)/(\sum f -1)](https://img.qammunity.org/2022/formulas/mathematics/college/2srizw2atshnu7ecg2gi5aahvpzabj4n3e.png)
This gives:
![s^2 = ((118.05-126.07)^2+(122.05-126.07)^2+(126.05-126.07)^2+(130.05-126.07)^2+(134.05-126.07)^2)/(38+24+28+43+29-1)](https://img.qammunity.org/2022/formulas/mathematics/college/82vjia185asx4oy4xrine8dcantkeb6nxv.png)
![s^2 = (160.002)/(161)](https://img.qammunity.org/2022/formulas/mathematics/college/u7skx0p36sn1clkdkztxf2o4ofnx37i5sv.png)
![s^2 = 0.9938](https://img.qammunity.org/2022/formulas/mathematics/college/iw2vzaupkzbdyz4gmag3d6vwbgpfz2hhbc.png)
The sample standard deviation (s) is:
![s = \sqrt{s^2](https://img.qammunity.org/2022/formulas/mathematics/college/lrx7qjt529cbogq5qz2s6ccdawmqaji5xr.png)
![s = \sqrt{0.9938](https://img.qammunity.org/2022/formulas/mathematics/college/6iug0kegu5yjm50luq6zgcyj6s6jhy4kq2.png)
![s = 0.9969](https://img.qammunity.org/2022/formulas/mathematics/college/p79hduft74gqmf6ke00m9mlhzcvyoyf7md.png)