82,888 views
12 votes
12 votes
Find x if the following points have a slope of 2 (-3,-2) & (x,6)

User BeepDog
by
2.5k points

2 Answers

27 votes
27 votes

Final answer:

Using the slope formula, we find that the value of x for the points (-3, -2) and (x, 6) to have a slope of 2 is x = 1.

Step-by-step explanation:

To find the value of x given that the slope of the line passing through the points (-3, -2) and (x, 6) is 2, we can use the slope formula, which is:

m = (Y2 - Y1) / (X2 - X1)

Substituting the given values and the slope into the formula, we get:

2 = (6 - (-2)) / (x - (-3))

This simplifies to:

2 = (6 + 2) / (x + 3)

8 / (x + 3) = 2

Multiplying both sides by (x + 3) results in:

8 = 2(x + 3)

Dividing both sides by 2 gives us:

4 = x + 3

Finally, subtract 3 from both sides to find the value of x:

x = 4 - 3

x = 1

User RolfBly
by
2.5k points
20 votes
20 votes

Answer:

x = 1

Step-by-step explanation:

Lets start off with the slope formula (m stands for slope, (x1, y1), (x2, y2):

m = (y2 - y1) / (x2 - x1)

Now, let's insert the values we do have into this equation. We know that m=2, x1 = -3, y1 = -2, x2 = x, and y2 = 6.

2 = (6 - (-2)) / (x - (-3))

Now we have to solve this equation, so lets multiply the denominator to both sides. And I’m also just going to rewrite the inside of the parenthesis because two negatives equals a positive.

2(x + 3) = (6 + 2)

Let's distribute the 2 to the parenthesis and simplify the right side.

2x + 6 = 8

Now subtract the 6 from both sides.

2x = 2

And divide 2 from both sides to isolate the variable.

x = 1

Ta-da! We've got our answer, x = 1.

User Sevko
by
2.9k points