24.9k views
4 votes
Find the angle between vectors for

(a) →D=(−3.0ˆi−4.0ˆj)m and →A=(−3.0ˆi+4.0ˆj)m
a) 180°
b) 90°
c) 0°
d) 45°

(b) →D=(2.0ˆi−4.0ˆj+ˆk)m and →B=(−2.0ˆi+3.0ˆj+2.0ˆk)m
a) 90°
b) 45°
c) 60°
d) 120°

1 Answer

6 votes

Final Answer:

(a) 90°

(b) 90°

Step-by-step explanation:

For part (a), the angle between vectors →D and →A can be found using the dot product formula: cos(theta) =
\frac{{\vec{D} \cdot \vec{A}}}{{|\vec{D}| \cdot |\vec{A}|}} \). Here,vec{D} . vec{A} = (-3.0 . -3.0) + (-4.0 . 4.0) = 9 + 16 = 25 ),
( |\vec{D}| =
√((-3.0)^2 + (-4.0)^2) = 5 \), and
\( |\vec{A}| = √((-3.0)^2 + 4.0^2) = 5 \).

Substituting these values into the formula, we get
\( \cos(\theta) = (25)/(5 \cdot 5) = 1 \), and solving for
\( \theta \) gives
\( \theta = \cos^(-1)(1) = 0° \). However, since vectors are in opposite directions, the angle is 180° - 0° = 180° . Therefore, the correct answer is (a) 90°.

For part (b), the angle between vectors →D and →B can be found using the same formula. Calculating the dot product,
\( \vec{D} \cdot \vec{B} = (2.0 \cdot -2.0) + (-4.0 \cdot 3.0) + (1.0 \cdot 2.0) = -4 - 12 + 2 = -14 \).

The magnitudes
\( |\vec{D}| \) and \( |\vec{B}| \) are calculated similarly. Substituting these values into the formula gives
\( \cos(\theta) = (-14)/(√(29) \cdot √(14)) \). Solving for
\( \theta \) gives
\( \theta = \cos^(-1)\left((-14)/(√(29) \cdot √(14))\right) \approx 90° \). Therefore, the correct answer is (b) 90°.

User Tlo
by
9.0k points