Final answer:
The correct displacement vector →R that when added to →D=(3ˆi−4ˆj)m results in −4ˆj is →R = (-3ˆi - 4ˆj)m, accounting for the x-component, as the y-component cancels out.
Step-by-step explanation:
The question involves finding the displacement vector →R so that when added to the displacement vector →D=(3ˆi−4ˆj)m, the result is −4ˆj. We can set up the equation as:
→D + →R = −4ˆj
Given →D=(3ˆi−4ˆj)m, we need to find →R that makes the equation true. If we substitute →D in the equation above, we have:
(3ˆi−4ˆj) + →R = −4ˆj
To find →R, we solve for →R:
→R = −4ˆj - (3ˆi−4ˆj)
→R must be
→R = −3ˆi + 0ˆj
Which simplifies to:
→R = (-3ˆi)m
Therefore, the correct answer is a) →R = (-3ˆi - 4ˆj)m, which accounts for the x-component only as the y-component cancels out.