Final answer:
The cross product of two vectors can be found using the formula →A × →C = (AyCz - AzCy)ẁ + (AzCx - AxCz)ṿ + (AxCy - AyCx). Calculate the cross products for the given vectors to find the final results.
Step-by-step explanation:
To find the cross product of two vectors →A and →C, we can use the formula →A × →C = (AyCz - AzCy)ẁ + (AzCx - AxCz)ṿ + (AxCy - AyCx). Let's calculate the cross products for the given vectors:
a) →A = 2.0i - 4.0j + ⁵k and →C = 3.0i + 4.0j + 10.0k:
→A × →C = (4.010.0 - ⁵4.04.0)⁵i + (⁵2.010.0 - 2.03.0)ṿj + (2.04.0 - 4.03.0)Ṻk
= 20.0⁵i - 14.0ṿj - 22.0Ṻk
b) →A = 3.0i + 4.0j + 10.0k and →C = 2.0i - 4.0j + ⁵k:
→A × →C = (⁵4.0⁵-10.0 - ⁵10.0-4.0)⁵i + (10.02.0 - 3.0⁵2.0)ṿj + (3.0-4.0 - 2.0(-4.0))Ṻk
= ⁵80.0⁵i + 2.0ṿj - 2.0Ṻk
c) →A = 3.0i - 4.0j and →C = 3.0i + 4.0j:
→A × →C = (4.0(4.0) - 3.0(-3.0))⁵i + (3.0(-3.0) - (-3.0)4.0)ṿk
= 7.0⁵i + 0ṿj + 3.0Ṻk
d) →A = 9.0ṿ and →C = -2.0i + 3.0j + 2.0k:
→A × →C = (-2.0Ṻ(-9.0) - (-2.00))(0)i + (2.0ẁ(-9.0) - 3.0Ṻ(-2.0))ṿj + (-3.0ẁ0 - 2.0(-2.0))Ṻk
= 18.0i + 39.0ṿj - 2.0Ṻk