Two-stock portfolio analysis:
- Calculated expected returns and standard deviations for various weightings.
- Provided information for risk-return graph with different correlations (negative, no, positive).
Portfolio Expected Return and Standard Deviation
Given:
- E(R₁) = 0.13
- E(R₂) = 0.17
- σ₁ = 0.04
- σ₂ = 0.05
- ρ = 0.75
- a) w₁ = 1.00:
Expected return:
E(R_p) = w₁ * E(R₁) + w₂ * E(R₂)
E(R_p) = 1.00 * 0.13 + 0.00 * 0.17
E(R_p) = 0.13
Expected standard deviation:
σ_p = sqrt(w₁² * σ₁² + w₂² * σ₂² + 2 * w₁ * w₂ * ρ * σ₁ * σ₂)
σ_p = sqrt(1.00² * 0.04² + 0.00² * 0.05² + 2 * 1.00 * 0.00 * 0.75 * 0.04 * 0.05)
σ_p = 0.04
b) w₁ = 0.70:
Expected return:
E(R_p) = 0.70 * 0.13 + 0.30 * 0.17
E(R_p) = 0.15
Expected standard deviation:
σ_p = sqrt(0.70² * 0.04² + 0.30² * 0.05² + 2 * 0.70 * 0.30 * 0.75 * 0.04 * 0.05)
σ_p = 0.038
c) w₁ = 0.60:
Expected return:
E(R_p) = 0.60 * 0.13 + 0.40 * 0.17
E(R_p) = 0.148
Expected standard deviation:
σ_p = sqrt(0.60² * 0.04² + 0.40² * 0.05² + 2 * 0.60 * 0.40 * 0.75 * 0.04 * 0.05)
σ_p = 0.036
d) w₁ = 0.20:
Expected return:
E(R_p) = 0.20 * 0.13 + 0.80 * 0.17
E(R_p) = 0.158
Expected standard deviation:
σ_p = sqrt(0.20² * 0.04² + 0.80² * 0.05² + 2 * 0.20 * 0.80 * 0.75 * 0.04 * 0.05)
σ_p = 0.042
e) w₁ = 0.05:
Expected return:
E(R_p) = 0.05 * 0.13 + 0.95 * 0.17
E(R_p) = 0.167
Expected standard deviation:
σ_p = sqrt(0.05² * 0.04² + 0.95² * 0.05² + 2 * 0.05 * 0.95 * 0.75 * 0.04 * 0.05)
σ_p = 0.046
Risk-Return Graph
The risk-return graph will show the expected return (E(R_p)) on the y-axis and the expected standard deviation (σ_p) on the x-axis.
The graph will have five points, each corresponding to one of the weights (w₁) calculated above.
For different values of the correlation coefficient (ρ):
- ρ = -0.75: The points will form a concave curve towards the origin, indicating a negative correlation between the two assets.
- ρ = 0.00: The points will be collinear, indicating no correlation between the two assets.
- ρ = 0.75: The points will form a convex curve away from the origin, indicating a positive correlation between the two