No mass of steam is needed to warm the cup and water from 20.0 °C to 50.0 °C because all the required heat comes from the condensation of the steam.
To solve this problem, we need to consider the heat transferred to the glass cup and the water in it. The heat transferred is given by the equation:
![\[ Q = mc\Delta T \]](https://img.qammunity.org/2024/formulas/physics/high-school/viivvm5fwe6r8lu77r18zmjvcc3t5mezpa.png)
where Q is the heat transferred, m is the mass, c is the specific heat capacity, and
is the temperature change.
The total heat transferred will be the sum of the heat needed to raise the temperature of the glass cup, the water, and the heat needed to condense the steam.
![\[ Q_{\text{total}} = Q_{\text{glass}} + Q_{\text{water}} + Q_{\text{steam}} \]](https://img.qammunity.org/2024/formulas/physics/college/zkdvzm781d36t75fx2smay549va9wzyuaa.png)
1. Heat for the glass cup:
![\[ Q_{\text{glass}} = m_{\text{glass}} \cdot c_{\text{glass}} \cdot \Delta T_{\text{glass}} \]](https://img.qammunity.org/2024/formulas/physics/college/fqfjhpm3unx4kerhijr5t6kbjlvtsibkzj.png)
2. Heat for the water:
![\[ Q_{\text{water}} = m_{\text{water}} \cdot c_{\text{water}} \cdot \Delta T_{\text{water}} \]](https://img.qammunity.org/2024/formulas/physics/college/y9zr3yjqrtvhselwg70k396r27cb93saxd.png)
3. Heat for the steam to condense:
![\[ Q_{\text{steam}} = m_{\text{steam}} \cdot L \]](https://img.qammunity.org/2024/formulas/physics/college/753qv78o10avmhnhl5cdcx1vwotoq42jg9.png)
Now, let's calculate each part step by step.
Given values:
![\[ c_{\text{steam}} = 2.01 * 10^3 \, \text{J/kg} \cdot \text{K} \]](https://img.qammunity.org/2024/formulas/physics/college/js782f6l54971buj30yx872gjjn3gavgj7.png)
![\[ c_{\text{water}} = 4.19 * 10^3 \, \text{J/kg} \cdot \text{K} \]](https://img.qammunity.org/2024/formulas/physics/college/8ozbsrskzwnzoa63a71qnshxffp5az8qb3.png)
![\[ c_{\text{glass}} = 8.37 * 10^2 \, \text{J/kg} \cdot \text{K} \]](https://img.qammunity.org/2024/formulas/physics/college/i1nagwin2plpkn6mpqt5cbxipgbqxxae6m.png)
![\[ L = 2.26 * 10^6 \, \text{J/kg} \]](https://img.qammunity.org/2024/formulas/physics/college/q2xyhl1ovygnvuerx0jg3prpcl5yh88qc0.png)
Given masses and temperature changes:
![\[ m_{\text{glass}} = 0.1 \, \text{kg} \]](https://img.qammunity.org/2024/formulas/physics/college/lskttziz5cay6und29shj9k6epspwdyhmo.png)
![\[ m_{\text{water}} = 0.2 \, \text{kg} \]](https://img.qammunity.org/2024/formulas/physics/college/en5pamzptovkvuirzc6cvxhsjme1eln4qd.png)
![\[ \Delta T_{\text{glass}} = \Delta T_{\text{water}} = 50 \, \text{\textdegree C} - 20 \, \text{\textdegree C} = 30 \, \text{\textdegree C} \]](https://img.qammunity.org/2024/formulas/physics/college/xxtilhaadtti8dly3bx8bimanmqr2n8fqm.png)
1. Heat for the glass cup:
![\[ Q_{\text{glass}} = 0.1 \, \text{kg} \cdot 8.37 * 10^2 \, \text{J/kg} \cdot \text{K} \cdot 30 \, \text{K} \]](https://img.qammunity.org/2024/formulas/physics/college/c4o26oe2xg4jnz7c95wuhnlkaiuaka0pzp.png)
![\[ Q_{\text{glass}} = 2.511 * 10^4 \, \text{J} \]](https://img.qammunity.org/2024/formulas/physics/college/p238qmzmdj252qnpn1kir4lgqo538anbbq.png)
2. Heat for the water:
![\[ Q_{\text{water}} = 0.2 \, \text{kg} \cdot 4.19 * 10^3 \, \text{J/kg} \cdot \text{K} \cdot 30 \, \text{K} \]](https://img.qammunity.org/2024/formulas/physics/college/uic95h3zotncpjr6yrsmrau4lpwfj3pt3s.png)
![\[ Q_{\text{water}} = 2.514 * 10^4 \, \text{J} \]](https://img.qammunity.org/2024/formulas/physics/college/3agdgbedz8kh46iqd4wynx8dsqzufko4es.png)
3. Heat for the steam to condense:
![\[ Q_{\text{steam}} = m_{\text{steam}} \cdot L = ? \]](https://img.qammunity.org/2024/formulas/physics/college/gn3coyjimf9pz0w054k6ws5vtdjkrg3qfo.png)
Now, let's calculate
using the fact that the total heat transferred is equal to the sum of the individual heats:
![\[ Q_{\text{total}} = Q_{\text{glass}} + Q_{\text{water}} + Q_{\text{steam}} \]](https://img.qammunity.org/2024/formulas/physics/college/zkdvzm781d36t75fx2smay549va9wzyuaa.png)
![\[ Q_{\text{total}} = 2.511 * 10^4 \, \text{J} + 2.514 * 10^4 \, \text{J} + Q_{\text{steam}} \]](https://img.qammunity.org/2024/formulas/physics/college/gwvcik59iveu4r2vfv01f8e9f0e3tbinb3.png)
![\[ Q_{\text{total}} = 5.025 * 10^4 \, \text{J} + Q_{\text{steam}} \]](https://img.qammunity.org/2024/formulas/physics/college/x489jh0guhbp6hr8noeh3gnuc6goj43h7x.png)
Now, subtract the heat for the glass and water from the total heat to find the heat needed to condense the steam:
![\[ Q_{\text{steam}} = Q_{\text{total}} - (Q_{\text{glass}} + Q_{\text{water}}) \]](https://img.qammunity.org/2024/formulas/physics/college/3w1fntk2s61cnl9r3ond825qveq2i3imkg.png)
![\[ Q_{\text{steam}} = 5.025 * 10^4 \, \text{J} - (2.511 * 10^4 \, \text{J} + 2.514 * 10^4 \, \text{J}) \]](https://img.qammunity.org/2024/formulas/physics/college/hdffd5s0mmmeg2fkak0kl2k08sd80dp3um.png)
![\[ Q_{\text{steam}} = 5.025 * 10^4 \, \text{J} - 5.025 * 10^4 \, \text{J} \]](https://img.qammunity.org/2024/formulas/physics/college/opq3ovl72ivi344nd4f5boi69qvl7zynx2.png)
![\[ Q_{\text{steam}} = 0 \]](https://img.qammunity.org/2024/formulas/physics/college/x7zi2d97fk9fadi82wxsrjkx83bqsx3q1g.png)
Since the heat needed to condense the steam is zero, it means that all the heat required to warm the glass cup and water comes from the condensation of the steam.
Therefore, the mass of steam needed is
.
In conclusion, no mass of steam is needed to warm the cup and water from 20.0 °C to 50.0 °C because all the required heat comes from the condensation of the steam.