Answer:
Step-by-step explanation:
To evaluate the integral ∫[5,∞] f(x) dx, we can use the given identity to rewrite the function f(x) as a difference of fractions:
f(x) = 3/(2x² - 7x + 5) = 2/(2x - 5) - 1/(x - 1).
Now, let's integrate the function f(x) over the given interval [5, ∞]:
∫[5,∞] f(x) dx = ∫[5,∞] (2/(2x - 5) - 1/(x - 1)) dx.
We can integrate each term separately:
∫[5,∞] (2/(2x - 5)) dx = 2∫[5,∞] (1/(2x - 5)) dx.
To evaluate this integral, we can use the u-substitution method:
Let u = 2x - 5, then du/dx = 2, and dx = du/2.
Substituting these values into the integral, we get:
2∫[5,∞] (1/(2x - 5)) dx = 2∫[u(5),∞] (1/u) (du/2)
= ∫[u(5),∞] (1/u) du
= ln|u|∣∣[u(5),∞]
= ln|2x - 5|∣∣[5,∞].
Now let's evaluate the second term of the original integral:
∫[5,∞] (1/(x - 1)) dx.
To evaluate this integral, we can use the u-substitution method again:
Let u = x - 1, then du/dx = 1, and dx = du.
Substituting these values into the integral, we get:
∫[5,∞] (1/(x - 1)) dx = ∫[u(5),∞] (1/u) du
= ln|u|∣∣[u(5),∞]
= ln|x - 1|∣∣[5,∞].
Now, let's evaluate the integral:
∫[5,∞] f(x) dx = ∫[5,∞] (2/(2x - 5) - 1/(x - 1)) dx
= ln|2x - 5|∣∣[5,∞] - ln|x - 1|∣∣[5,∞].
When we evaluate the upper limit of integration (x = ∞), both ln|2x - 5| and ln|x - 1| approach positive infinity. Thus, the integral ∫[5,∞] f(x) dx also approaches positive infinity.
Therefore, we can conclude that the integral ∫[5,∞] f(x) dx diverges.