Answer:
(a) Positive: 460° and 820°
Negative: -260° and -620°
(b) Positive: 505° and 865°
Negative: -215° and -575°
(c) Positive: 350° and 710°
Negative: -370° and -730°
Explanation:
Coterminal angles: Angles that have the same initial side and the same terminal sides.
To find the coterminal angles of angle θ:
- θ ± 360n, if θ is measured in degrees.
- θ ± 2πn, if θ is measured in radians.
Part (a)
Given angle:
Positive angles:
⇒ 100° + 360° = 460°
⇒ 100° + 360° × 2 = 820°
Negative angles:
⇒ 100° - 360° = -260°
⇒ 100° - 360° × 2 = -620°
Part (b)
Given angle:
Positive angles:
⇒ 145° + 360° = 505°
⇒ 145° + 360° × 2 = 865°
Negative angles:
⇒ 145° - 360° = -215°
⇒ 145° - 360° × 2 = -575°
Part (c)
Given angle:
Positive angles:
⇒ -10° + 360° = 350°
⇒ -10° + 360° × 2 = 710°
Negative angles:
⇒ -10° - 360° = -370°
⇒ -10° - 360° × 2 = -730°