Final answer:
To multiply the expressions, substitute the expressions into b, c, and d and simplify. Then, when a = 1, substitute a = 1 into the expressions to find the values of b, c, and d.
Step-by-step explanation:
Problem
Multiply the expressions:
b = (3x²+2z-21) * (-22²-2x+12)
c = (3x²+2z-21) * (2z²+25z +63)
d = (3x²+2z-21) * (6z²+72-49)
Solution
Step 1: Simplify the expressions in parentheses.
b = (3x²+2z-21) * (484-2x+12)
c = (3x²+2z-21) * (2z²+25z +63)
d = (3x²+2z-21) * (6z²+72-49)
Step 2: Multiply the simplified expressions.
b = 1452x² - 176x - 992z² + 48z + 9936
c = 6z⁴ + 75z³ + 243z² - 441z - 3726x² + 702x + 9111
d = 18z⁴ + 216z³ - 294z² - 462z - 7944x² + 1494x + 19404
If a = 1
To find the values of b, c, and d when a = 1, substitute a = 1 into the expressions.
b = 1452 - 176 - 992z² + 48z + 9936
c = 6z⁴ + 75z³ + 243z² - 441z - 3726 + 702 + 9111
d = 18z⁴ + 216z³ - 294z² - 462z - 7944 + 1494 + 19404
Simplified Expressions
b = -176 - 992z² + 48z + 11088
c = 6z⁴ + 75z³ + 243z² - 441z - 3021 + 702 + 9111
d = 18z⁴ + 216z³ - 294z² - 462z + 4002 + 1494 + 19404
Result
b = -992z² + 48z - 176 + 11088
c = 6z⁴ + 75z³ + 243z² - 441z + 3432
d = 18z⁴ + 216z³ - 294z² - 462z + 25308