Comparing the weighted mean RORs, the order from best to worst is option A.
![\[ \text{Portfolio 3} > \text{Portfolio 1} > \text{Portfolio 2} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1w2cddcubzuqaijeiu0aci5mx90gpwfy2i.png)
How did we arrive at this assertion?
To calculate the weighted mean of the Rate of Return (ROR) for each portfolio, you can use the following formula:
![\[ \text{Weighted Mean ROR} = \frac{\sum(\text{ROR} * \text{Portfolio Value})}{\sum \text{Portfolio Value}} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/uyo1gkx4q6vkwdp76nbul6k09u2c2nsymq.png)
Let's calculate the weighted mean for each portfolio:
Portfolio 1:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 1}} = ((11.3\% * 1250) + (2.9\% * 575) + (-5.6\% * 895) + (2.9\% * 800) + (5.8\% * 1775))/(1250 + 575 + 895 + 800 + 1775) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/tzjqeq0em1htwqo6m0uyfqhzh09g73av1e.png)

=

Portfolio 2:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 2}} = ((11.3\% * 950) + (2.9\% * 2025) + (-5.6\% * 1185) + (2.9\% * 445) + (5.8\% * 625))/(950 + 2025 + 1185 + 445 + 625) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/vd1rmtoduhdn23p95h500lje8iun9ex4p2.png)
=

=

Portfolio 3:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 3}} = ((11.3\% * 900) + (2.9\% * 2350) + (-5.6\% * 310) + (2.9\% * 1600) + (5.8\% * 2780))/(900 + 2350 + 310 + 1600 + 2780) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/2jor734nrr06fr3a3sz0ks16d0mxuxcn7i.png)
=

=

Given the values:
Portfolio 1:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 1}} \approx 0.04\% \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/7o2t2yv1lfqwmbm50q3pc3x4c07ad2cyfl.png)
Portfolio 2:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 2}} \approx 0.03\% \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/dm3ej53d10a0q5k1ro4xnew253psq99qht.png)
Portfolio 3:
![\[ \text{Weighted Mean ROR}_{\text{Portfolio 3}} \approx 0.05\% \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/pjpoeq4cr6df6sptaeu59fc1yux74zg8yi.png)
Now, comparing the weighted mean RORs, the order from best to worst is:
![\[ \text{Portfolio 3} > \text{Portfolio 1} > \text{Portfolio 2} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/1w2cddcubzuqaijeiu0aci5mx90gpwfy2i.png)
So, the correct answer is:
![\[ \text{Portfolio 3, Portfolio 1, Portfolio 2} \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/ilq0ci4f71hv6x3qo01yofc5qccwcmjabx.png)