233k views
5 votes
7x^-2y/9x^8y^-5
^=next number exponent
Solve

User ScottF
by
7.9k points

1 Answer

3 votes
To simplify the expression \(\frac{7x^{-2}y}{9x^8y^{-5}}\), you can use the properties of exponents.

First, combine the variables with the same bases:

\[
\frac{7}{9} \cdot \frac{x^{-2}}{x^8} \cdot \frac{y}{y^{-5}}
\]

Next, simplify each part individually:

\[
\frac{7}{9} \cdot \frac{1}{x^{2+8}} \cdot \frac{y^1}{y^{-5}}
\]

Combine the exponents:

\[
\frac{7}{9} \cdot \frac{1}{x^{10}} \cdot y^{1-(-5)}
\]

Simplify further:

\[
\frac{7y^6}{9x^{10}}
\]

So, \(\frac{7x^{-2}y}{9x^8y^{-5}}\) simplifies to \(\frac{7y^6}{9x^{10}}\).
User Nuclear
by
8.4k points