The height of the communication tower is approximately
.
To calculate the height of the communication tower, we can use trigonometry. Let's denote the height of the building as
and the height of the communication tower as
.
First, let's consider the angle of elevation to the top of the building. Using the tangent function:
![\[ \tan(\text{angle of elevation to building}) = \frac{h_{\text{building}}}{\text{distance to building}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/3hnr1uyn0jixw8vmjf2bh94lxuoe8opmkl.png)
![\[ \tan(55.01°) = \frac{h_{\text{building}}}{175 \, \text{m}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/47lblvswfwbqiei5boeqt2za46ub2ilyae.png)
Now, solve for
:
![\[ h_{\text{building}} = 175 \, \text{m} * \tan(55.01°) \]](https://img.qammunity.org/2024/formulas/mathematics/college/o1wd13smqwyxgtlk01z98anbk8hz2xf82x.png)
Next, consider the angle of elevation to the top of the communication tower:
![\[ \tan(\text{angle of elevation to tower}) = \frac{h_{\text{building}} + h_{\text{tower}}}{\text{distance to tower}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/baddfs2xj09x71bu36uujve2b281coqd84.png)
![\[ \tan(57.53°) = \frac{h_{\text{building}} + h_{\text{tower}}}{175 \, \text{m}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/ejeqp3mgqaquen2jlp736zi3bk9e402ipv.png)
Now, solve for
:
![\[ h_{\text{tower}} = 175 \, \text{m} * \tan(57.53°) - h_{\text{building}} \]](https://img.qammunity.org/2024/formulas/mathematics/college/g84v1i49mbx71edjo9myuxlwrtnw37j8wm.png)
Now, substitute the value of
into this equation to find
:
![\[ h_{\text{tower}} = 175 \, \text{m} * \tan(57.53°) - (175 \, \text{m} * \tan(55.01°)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/6uf26gjlpf48is9644818ukj6uw1ddhe7g.png)
Let's calculate the expression to find the height of the communication tower:
![\[ h_{\text{tower}} = 175 \, \text{m} * \tan(57.53°) - (175 \, \text{m} * \tan(55.01°)) \]](https://img.qammunity.org/2024/formulas/mathematics/college/6uf26gjlpf48is9644818ukj6uw1ddhe7g.png)
Using a calculator:
![\[ h_{\text{tower}} = 175 \, \text{m} * 1.4724 - (175 \, \text{m} * 1.4284) \]\[ h_{\text{tower}} \approx 257.94 \, \text{m} - 249.47 \, \text{m} \]\[ h_{\text{tower}} \approx 8.47 \, \text{m} \]](https://img.qammunity.org/2024/formulas/mathematics/college/yz7jb9sqd0oabo1piyj8niyko3o0twlmee.png)
Therefore, the height of the communication tower is approximately
.