The values of x, y, and z in the rhombus are x = 1, y = 2, and z = 3.
To find the values of x, y, and z in the given rhombus, let's analyze the given information.
We have angles of 78°, (-3z + 9)°, (-5x - 10)°, and (-4y + 6)°.
Since a rhombus has all four angles equal, we can set up equations to solve for x, y, and z.
Equating the given angles, we have:
78° = -3z + 9
(-3z + 9)° = -5x - 10
(-5x - 10)° = -4y + 6
Solving these equations, we can find the values of x = 1, y = 2, and z = 3.