Answer:
![\[ (3)/(4)n \]](https://img.qammunity.org/2024/formulas/mathematics/college/e8w4wa9j76txl03q3za1yyvkzknnr9n5p7.png)
Explanation:
Let's find the linear function that represents Sebastian's calculator. We can use the given points (8, 6) and (12, 9).
The slope (m) can be calculated as the change in y divided by the change in x:
![\[ m = (9 - 6)/(12 - 8) = (3)/(4) \]](https://img.qammunity.org/2024/formulas/mathematics/college/kbpa1h8ip6w5mifg3icu0oddlhzitwew3k.png)
Now that we have the slope, we can use the point-slope form of a linear equation:
![\[ y - y_1 = m(x - x_1) \]](https://img.qammunity.org/2024/formulas/mathematics/high-school/c43lppso0e9zjavshclm60ubvbni34e6n2.png)
Using the point (8, 6):
![\[ y - 6 = (3)/(4)(x - 8) \]](https://img.qammunity.org/2024/formulas/mathematics/college/5y9hggpmesfpe07w4on1cvqfv71fq8a2n1.png)
Simplifying:
![\[ y - 6 = (3)/(4)x - 6 \]](https://img.qammunity.org/2024/formulas/mathematics/college/g1kgig4j4bv3527b5clcml8ps7kogc6j34.png)
Now, isolate y:
![\[ y = (3)/(4)x \]](https://img.qammunity.org/2024/formulas/mathematics/college/653k3z59wuswc7jzksr5h0nnja2j287znq.png)
So, the expression that explains what the calculator will display when any number (n) is entered is:
![\[ (3)/(4)n \]](https://img.qammunity.org/2024/formulas/mathematics/college/e8w4wa9j76txl03q3za1yyvkzknnr9n5p7.png)