The potato, launched horizontally at 25.0 m/s from a 1.50-meter height, will travel approximately 13.825 meters.
To determine the horizontal distance (dx) traveled by the potato after being fired from the potato gun, we can use the kinematic equation:
![\[ dx = v_(0x) \cdot t \]](https://img.qammunity.org/2024/formulas/physics/college/18n6r80x0qw1ceealo0tz6vzldovgnelnx.png)
where:
- dx is the horizontal distance,
-
is the horizontal component of the initial velocity (which is the launch velocity, 25.0 m/s),
- t is the time of flight.
The time of flight (t) can be found using the vertical motion equation for free fall:
![\[ h = v_(0y) \cdot t + (1)/(2) \cdot g \cdot t^2 \]](https://img.qammunity.org/2024/formulas/physics/college/exhnum0tobw1a3cw5x67nq0r8uv17mfrxf.png)
where:
- h is the initial height (1.50 meters),
-
is the vertical component of the initial velocity (0 m/s for horizontal launch),
- g is the acceleration due to gravity (approximately 9.8 m/s²).
Rearranging the equation for time (t), we get:
![\[ t = \sqrt{(2h)/(g)} \]](https://img.qammunity.org/2024/formulas/physics/high-school/46p9ajv3pmfsfi267dk2zmiehxchorqes7.png)
Now, substitute the given values:
![\[ t = \sqrt{\frac{2 \cdot 1.50 \, \text{m}}{9.8 \, \text{m/s}^2}} \]](https://img.qammunity.org/2024/formulas/physics/college/ysor9ud0lc3owghdb4tt0y25gqgzqt3fym.png)
Calculate t and then use it to find dx using the first kinematic equation.
Let's calculate t first:
![\[ t = \sqrt{\frac{2 \cdot 1.50 \, \text{m}}{9.8 \, \text{m/s}^2}} \]](https://img.qammunity.org/2024/formulas/physics/college/ysor9ud0lc3owghdb4tt0y25gqgzqt3fym.png)
![\[ t \approx \sqrt{(3.00)/(9.8)} \]](https://img.qammunity.org/2024/formulas/physics/college/ir02fr11w6hrtifum9d9u8m5mr5dk43qyh.png)
![\[ t \approx \sqrt{0.306 \, \text{s}^2} \]](https://img.qammunity.org/2024/formulas/physics/college/vi42fn96t2spju8p431nscwdmauolap5mt.png)
![\[ t \approx 0.553 \, \text{s} \]](https://img.qammunity.org/2024/formulas/physics/college/fyry9q11ekb23imhqtix3b77zqcwwk2emk.png)
Now, use this time value to find dx:
![\[ dx = v_(0x) \cdot t \]](https://img.qammunity.org/2024/formulas/physics/college/18n6r80x0qw1ceealo0tz6vzldovgnelnx.png)
![\[ dx = 25.0 \, \text{m/s} \cdot 0.553 \, \text{s} \]](https://img.qammunity.org/2024/formulas/physics/college/o247hm3dicqi982e4w1zzei45h2qzrul5i.png)
![\[ dx \approx 13.825 \, \text{m} \]](https://img.qammunity.org/2024/formulas/physics/college/jynyhk6duk4np6tflz42v1jjczcxql94zm.png)
So, the potato will travel approximately 13.825 meters horizontally from the gun.