73.5k views
0 votes
Mathematics pa help po

Mathematics pa help po-example-1
User Tooluser
by
7.9k points

1 Answer

1 vote

1.
5√(2) \)

2.
9√(x) \)

3.
5m√(3n) \)

4.
6x^2y^3√(2y) \)

5.
(√(2))/(5) \)

6.
(2√(3))/(5) \)

7.
(3y^2√(5x))/(16x) \)

8.
11x^3y√(z) \)

9.
8x√(2x) \)

10.
(3x√(x))/(4y^2) \)

How did we get the values?

Let's simplify each expression:

1.
\( √(50) \)


- \( √(50) = √(25 * 2) \\= √(25) * √(2) \\= 5√(2) \)

2.
\( √(81x) \)

-
\( √(81x) = √(9 * 9 * x) \\= 9√(x) \)

3.
\( √(75m^2n) \)


- \( √(75m^2n) = √(25 * 3 * m^2 * n) \\= 5m√(3n) \)

4.
\( 3√(8x^4y^7) \)


- \( 3√(8x^4y^7) = 3 * 2x^2y^3 √(2y) \\= 6x^2y^3√(2y) \)

5.
\( (√(2))/(√(25)) \)


- \( (√(2))/(√(25)) = (√(2))/(5) \)

6.
\( \sqrt{(12)/(25)} \)


- \( \sqrt{(12)/(25)} = (√(12))/(√(25)) \\= (2√(3))/(5) \)

7.
\( (√(45x^3y^4))/(16x^2) \)


- \( (√(45x^3y^4))/(16x^2) = (3xy^2√(5x))/(16x^2) \\= (3y^2√(5x))/(16x) \)

8.
\( √(121x^6y^3z) \)


- \( √(121x^6y^3z) = √(11^2 * x^6 * y^3 * z) \\ = 11x^3y√(z) \)

9.
\( (√(128x^3y^5))/(√(2xy^2)) \)


- \( (√(128x^3y^5))/(√(2xy^2)) = (8xy^2√(2x))/(√(2xy^2)) \\= 8x√(2x) \)

10.
\( \sqrt{(0.09x^3)/(0.16y^4)} \)


- \( \sqrt{(0.09x^3)/(0.16y^4)} = (√(0.09x^3))/(√(0.16y^4)) \\= (0.3x√(x))/(0.4y^2) \\= (3x√(x))/(4y^2) \)

User Optimistic Peach
by
8.3k points