Answer:
Explanation:
Given that:
P(Y) = ky
where;
y =1,2,...7
To find the value of c or k (constant)
![\sum P(Y) = 1](https://img.qammunity.org/2022/formulas/mathematics/college/7eg3vumn3kyod4a3a11cjmln4av7865vj3.png)
![\sum \limits_(y \to 1)^7 k*y = 1](https://img.qammunity.org/2022/formulas/mathematics/college/8kjyjc0n8zycs33syus6ax5abev9o4bxuy.png)
= k(1+2+3+4+5+6+7) = 1
28k = 1
![k = (1)/(28)](https://img.qammunity.org/2022/formulas/mathematics/college/p2qq4c0mrbmc0tyucqirof08atfij3g2mn.png)
b) The required probability is P ( X ≤ 3)
![P(X \le 3) = \sum \limits^3_(y=1 ) P(y)](https://img.qammunity.org/2022/formulas/mathematics/college/l2ojlgxtr4lrb2he64c15zd1mq29zu7s3d.png)
![P(X \le 3) = \sum \limits^3_(y=1 ) (1)/(28)(y)](https://img.qammunity.org/2022/formulas/mathematics/college/kf3zop8to34aaopr6lnsbujrp16j2zotth.png)
![P(X \le 3) = (1)/(28) (1 +2+3)](https://img.qammunity.org/2022/formulas/mathematics/college/t0jt5h2y8igkahk3wbggmybskej0i0ueb5.png)
![P(X \le 3) = (6)/(28)](https://img.qammunity.org/2022/formulas/mathematics/college/81nf8efvgnivlh0vbyc4lmnup8bjl8dym6.png)
P ( X ≤ 3) = 0.2143
c) The required probability P(2 ≤ Y ≤ 4)
![P(2 \le Y \le 4) = \sum \limits ^4_(y=2) P(Y)](https://img.qammunity.org/2022/formulas/mathematics/college/3co6bld1lgl0gioi9c0flgawbbg55st6rd.png)
![P(2 \le Y \le 4) = \sum \limits ^4_(y=2) (1)/(28)(Y)](https://img.qammunity.org/2022/formulas/mathematics/college/voa458dmfzjrg9zaztizpwc89n2c6x6z6a.png)
![P(2 \le Y \le 4) = (1)/(28)(2+3+4)](https://img.qammunity.org/2022/formulas/mathematics/college/jv7d8mdkvxub0tb7a95duo9mww4do3v17n.png)
![P(2 \le Y \le 4) = 0.3214](https://img.qammunity.org/2022/formulas/mathematics/college/t32o977w7xubvqn9ewt462sfdhzyan371h.png)
d) The required probability:
![P(X) = (x^2)/(50) ; \ \ \ \ where; \ x= 1,2,...5](https://img.qammunity.org/2022/formulas/mathematics/college/fu8ag830oi6d643nur909lx6o0oqwhd0i2.png)
![\sum \limits ^5_(y =1) P(Y)= \sum \limits ^5_(y =1) (1)/(50)(x)^2](https://img.qammunity.org/2022/formulas/mathematics/college/xj529kmhls65e03r3txlvek38nalbjy7kw.png)
![\sum \limits ^5_(y =1) P(Y)= \sum \limits ^5_(y =1) (1)/(50)(1+4+9+16+25)](https://img.qammunity.org/2022/formulas/mathematics/college/s8n2rsmiwpcw88sl1bh8eu1hjtuz2ynmk7.png)
![\sum \limits ^5_(y =1) P(Y)=1.1](https://img.qammunity.org/2022/formulas/mathematics/college/ix8anpdek0l1woxcck5f84vgrum188q28j.png)